Novel STI Step-height Uniformity Control by Wet Etch Process in 4xnm CMOS Device

H. W. Hoa, Y. M. Liao*a, M. C. Lub, T. H. Yingb

aWet Etch Technology Group, Process Technology Division, Powerchip Technology Corp.
bProcess Technology Division, Powerchip Technology Corp.

No. 12, Li-Hsin RD. 1, Hsinchu, Taiwan, R.O.C

*:\ thenova@powerchip.com
+886-3-5795000 ext 8690
Introduction
- HARP & HDP materials characteristic comparison
- The importance of step height uniformity control
- STI HARP wet etching uniformity performance by liquid HF

Step Height Uniformity Improvement
- Annealing effect
- Liquid HF (LHF) & gas HF (GHF) etching mechanism
- Process optimization result

Conclusion
Powerchip STI Materials Comparison (HDP & HARP)

- High aspect ratio process (HARP) has been applied in shallow trench isolation (STI) for 45nm CMOS and beyond due to better gap fill ability.

STI (Shallow Trench Isolation) Material Road Map

<table>
<thead>
<tr>
<th>Generation</th>
<th>130 nm</th>
<th>65 nm</th>
<th>55 nm</th>
<th>4x nm</th>
<th>2x nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDP</td>
<td>A/R<4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARP</td>
<td>A/R~6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HDP (High density plasma):
- Precursor: SiH$_4$ (silane)
- ✓ SiO$_2$ cross-linking before annealing
- ✓ Poor gap fill ability (A/R<4)

HARP (High aspect ratio process):
- Precursor: O$_3$ + TEOS (Si(OC$_2$H$_5$)$_4$)
- ✓ SiO$_2$ cross-linking after annealing
- ✓ Better gap fill ability (A/R~6)

Reaction equation:
SiH$_4$ + 2O$_2$ + Ar \rightarrow SiO$_2$ + 2H$_2$O + Ar + ...

Deposition + Sputtering = HDP-CVD

HARP anneal Re-flow

Generation 130 nm 65 nm 55 nm 4x nm 2x nm
HDP A/R<4
HARP A/R~6

Seam-Free

SiO$_2$
HARP wet etching rate (E/R) is harder to be controlled than HDP in different STI width by conventional liquid HF (LHF).

- **HDP**: Good step height uniformity
- **HARP**: Worse step height uniformity
Step height control is necessary to avoid poly residue issue and Y% loss.

Case 1:
- Poly
- STI
- AA
- Step height
- Shallow Divot

Case 2:
- Poly
- STI
- AA
- Step height
- Deep Divot

Before poly gate etch

After poly gate etch

Poly residue free

Poly residue → Y% killer
Worse Step height Uniformity by LHF

- Step height (S/H) uniformity in different STI width is worse under LHF etching during well implant and gate oxide formation process.
- S/H in narrow STI width is lower than wide one and the bias is 18.5nm.

![Graph showing step height uniformity](image-url)

- Step height (S/H) uniformity in different STI width is worse under LHF etching during well implant and gate oxide formation process.
- S/H in narrow STI width is lower than wide one and the bias is 18.5nm.
Anneal Effect on Wet Etch Uniformity

- Annealed HARP quality is different from narrow to wide STI width.
- Etch amount (E/A) uniformity is worse in annealed HARP than without annealed one.
Annealed HARP Quality in Different STI Width

- Narrow STI width area: weak cross-linking & high impurity.
- Wide STI width area: strong cross-linking & low impurity.

Weak Cross-linking
- High Impurity

Strong Cross-linking
- Low Impurity

STI width
- Narrow → Wide

LHF (hardness dominate)
- Fast → Slow

GHF (diffusion dominate)
- Slow → Fast
LHF & GHF Etching Mechanism

- LHF: HARP cross-linking (hardness) dominate.
- GHF: gas diffusion is limited by HARP impurity.

STI width

- **Narrow**
 - LHF (Si-O-Si De-bonding)
 - Weak cross-linking \Rightarrow E/R fast

- **Wide**
 - GHF (gas diffusion reaction)
 - Strong cross-linking \Rightarrow E/R slow

Impurity

- High impurity \Rightarrow E/R slow
- Less impurity \Rightarrow E/R fast
LHF and GHF E/R in different STI width is opposite.
After optimizing the process flow by combining LHF and GHF, S/H bias through all STI width can be reduced from 18.2nm to 4.5nm.

The approach is very helpful for process window enlargement in following gate etch step.
<table>
<thead>
<tr>
<th>STI width</th>
<th>Narrow</th>
<th>Middle</th>
<th>Wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHF only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step height (nm)</td>
<td>0</td>
<td>11.4</td>
<td>18.5</td>
</tr>
<tr>
<td>Optimized process (LHF + GHF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step height (nm)</td>
<td>12.4</td>
<td>14.1</td>
<td>14.9</td>
</tr>
</tbody>
</table>
The cross-linking and impurity content of annealed HARP is different between STI width, which is key impact factors of STI wet etching uniformity.

E/R of LHF is related to oxide film hardness, on the other hand, E/R of GHF is limited by HARP impurity. Therefore, different HARP quality between STI width leads opposite E/A trend in LHF and GHF.

Low S/H bias (<5nm) can be achieved by combining LHF and GHF, and poly gate etch process window can be enlarged by this fine-tuned STI profile.
Thank you for your attention