Investigation of Ceria Abrasive Removal during Post Chemical Mechanical Polishing Cleaning

Juhyun Kim, Seokjun Hong, Vinit K. Kanade, Taesung Kim

1School of Mechanical Engineering, Sungkukwan University, Suwon, South Korea
2SKKU Advanced Institute of Nanotechnology, Sungkukwan University, Suwon, South Korea

+82-31-299-4751 / 85277, Seoburo 2066, Jangangu, Suwonsi, Korea / kjh0045@skku.edu

BACKGROUND AND OBJECTIVES

- Device shrinkage → Requirements smooth surface
- Global surface planarization → CMP
- After CMP process → CMP contamination
- Post CMP cleaning is needed

High cleaning performance is needed

EXPERIMENTAL METHOD

Table 1. CMP contamination

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>CMOS CMP</th>
<th>Metal CMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate</td>
<td>Silica or ceria, fine fragments of films or pad</td>
<td>Alumina, or silica, metal hydroxide, precipitates, fine fragments of films or pad</td>
</tr>
<tr>
<td>Metallic</td>
<td>K+Ca2+</td>
<td>Cu2+Al3+Fe3+ etc.</td>
</tr>
<tr>
<td>Organic</td>
<td>Titanium oxide, zirconium oxide, butts, surfaces, additives</td>
<td>Buffers, surfactants, inhibitors</td>
</tr>
<tr>
<td>Other defects</td>
<td>Scratches, stress</td>
<td>Scratches, disbursing and stressful stress</td>
</tr>
</tbody>
</table>

EXPERIMENTAL RESULTS

Fig 1. Experimental Setup: Polishing and Cleaning

Fig 2. Zeta potential: Ceria particle, PE

- \(\zeta \) (zeta potential): Charge
- **Cleaner A**: EDTA, TMAH base
- **Cleaner B**: Acetic acid, TMAH base
- **Cleaner C**, **D**, **E**: Acetic acid, EDTA, TMAH base

Fig 3. Amount of Ce ions after cleaning and repulsion

Fig 4. Relation between repulsion and Ce ions

Table 2. Polishing Conditions

<table>
<thead>
<tr>
<th>Step</th>
<th>Solution</th>
<th>Stirrer rotation speed (RPM)</th>
<th>Pressure (ps)</th>
<th>Polishing/Conditioning time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIW</td>
<td>0</td>
<td>5</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>Cleaner A</td>
<td>500</td>
<td>5</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>DIW</td>
<td>500</td>
<td>5</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>Cleaner A</td>
<td>500</td>
<td>5</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>DIW</td>
<td>500</td>
<td>5</td>
<td>300</td>
</tr>
</tbody>
</table>

ICP-MS (PE-TEOS wafer)

ICP-MS (Nitride wafer)

CONCLUSION

- 5 cleaners are developed for post CMP cleaning
- Zeta potential plays an important role in cleaning
- Zeta potential is related to repulsive force
- The larger repulsion, the better cleaning performance

REFERENCES