From **Waste** to **Reuse**:
Chemical Waste Management and Environmental Sustainability

Kathleen Fiehrer, Intel Materials Engineer
April 1, 2019
Agenda – Waste to Reuse

• Intel fab processing waste management
 • Historical
 • Current
• 2020 Corporate Environmental Goals
 • Zero Hazardous Chemical Waste to Landfill
• Fab waste management progress
• Future Direction
• Supplier Opportunity
Fab Chemical Waste Management

In 2012, Intel materials organization assumed management of fab chemical waste from the logistics group

- Intel fab chemical waste strategy pivoted from compliance focus to focus on disposal method and cost
 - **reuse** > **recycle** > **disposal**

![2012 Waste Disposal Method]

- Total volume – 47K tons
Why does Intel care about disposal methods?

Intel CEO’s stated EHS policy

- “responsible environmental stewardship is good business”

Benchmarking

- Semiconductor manufacturers
 - 30% in-house regeneration, 95% recycle*
 - 95% recycling rate of manufacturing waste**
- Customer sustainability requirements

2020 Waste Environmental Goals

- Zero hazardous chemical waste to landfill
- 90% solid waste recycle

Sources of Fab Processing Waste

Air Emissions
- VOCs
- SO$_x$, NO$_x$
- PM10, PM2.5
- HAPs
- PFCs
- HF, HCl

Waste Water Pollutants
- HF
- NH4OH
- Metal ions
- Aqueous ions, TDS
- Organics, TN etc

Chemical Waste – Intel supply chain focus

- Lithography –
 - Solvent waste
- Dry Etch and Thin Films
 - PFC gases converted to HF in POU device
- Polish Waste
 - Polish solids and metal ions
- Metals deposition
 - Metal plating waste
- Wet etch
 - Aqueous and solvent waste
Wet Etch – Aqueous Waste

Onsite Waste Management

- NH₄OH
 - NH₄OH\(_{(aq)}\) + NaOH \rightarrow NH₃\(_{(g)}\)
 - NH₃\(_{(g)}\) + H₂SO₄ \rightarrow (NH₄)₂SO₄\(_{(aq)}\)
- HF
 - HF\(_{(aq)}\) + Ca(OH)₂ \rightarrow CaF₂\(_{(s)}\)
- NH₄OH/HF
 - NH₄ treatment
 - HF treatment
- H₂SO₄ – offsite disposal
- AWN – neutralized acids and bases
 - TDS - total dissolved solids
Wet Etch – Specialty Base Cleaners
organic/water solutions

- Onsite Waste Management
 - Classified as hazardous Waste
 - Collect and truck, manage disposal offsite
2013 US and 2014 IR Supplier Disposal Bid
Focus on disposal (reuse > recycle > disposal)

Total volume – 54K tons
Supplier Disposal Bid Opportunities – Wet Cleans

<table>
<thead>
<tr>
<th>Wet Clean → Waste stream</th>
<th>Pre-RFQ</th>
<th>2014 RFQ Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄OH → onsite treatment (NH₄)_₂SO₄</td>
<td>Waste Water treatment</td>
<td>Fertilizer manufacturing</td>
</tr>
<tr>
<td>HF → onsite treatment CaF₂</td>
<td>Landfill or cement kiln recycle</td>
<td>Cement Kiln Recycle</td>
</tr>
<tr>
<td>Specialty base cleaners → collect and truck</td>
<td>Incineration</td>
<td>Numerous Supplier proposals</td>
</tr>
<tr>
<td>Non-wet clean chemistry: litho solvents</td>
<td>Fuel Blend</td>
<td>Solvent purification and recovery</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>Onsite neutralization</td>
<td>2017 Collect and truck → landfill</td>
</tr>
</tbody>
</table>

Specialty base cleaners – >40% of total waste volume

- Incineration
- WWT at local POTW
- Fuel blend
- Reuse opportunity → rail car cleaning
 - EPA regulated waste under RCRA
 - RCRA exemption
 - Commercial replacement
- Current - Low BTU direct fuel
- Proposed by 2020 – water recovery and org fuel or chemical reuse
2013 US and 2014 IR Supplier Disposal Bid

Focus on disposal (reuse > recycle > disposal)

Total volume – 54K tons

Preferred

Reduce
Reuse
Recycle
Fuel
WWT
Incineration
Landfill

2015 Waste Disposal Method

Total volume – 76K tons
2013 US and 2014 IR Supplier Disposal Bid

Focus on Cost

- Closer Disposal Options
- Transportation Methods

- Pie chart showing
 - Disposal 49%
 - Transportation 45%
 - Other

- Bar chart showing
 - $/ton over time for AZ, IR, OR, and TOTAL
 - Colors for:
 - Trans
 - Treatment
 - Other
 - Years 2013 to 2018
2019 and Beyond – Focus for the Future

Trend
- Increased volumes
- Focus on business continuity
- Increased complexity

Total Chemical Waste by Year

- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019

11 Elements

15 Elements

Up to 45 Elements
Disposal Opportunities 2019 and Beyond – Wet Cleans

<table>
<thead>
<tr>
<th>Wet Clean → Waste stream</th>
<th>Current</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4$OH →</td>
<td>Fertilizer manufacturing</td>
<td>Fertilizer manufacturing</td>
</tr>
<tr>
<td>CaF$_2$</td>
<td>Cement kiln recycle</td>
<td>Cement Product (IR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cement kiln recycle (US)</td>
</tr>
<tr>
<td>Specialty base cleaners</td>
<td>Low BTU Fuel</td>
<td>Water recovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic high BTU fuel</td>
</tr>
<tr>
<td>Salt loading (aqueous cleans)</td>
<td></td>
<td>Landfill Na$_2$SO$_4$</td>
</tr>
<tr>
<td>Spent sulfuric acid</td>
<td><2017 local sewer</td>
<td>Recovery offsite</td>
</tr>
<tr>
<td></td>
<td>Stabilize and landfill</td>
<td>Onsite recovery for facility reuse</td>
</tr>
</tbody>
</table>
2019 and Beyond – Focus for the Future

- Continued emphasis on *reuse/recovery* while maintaining cost pressure
- Separately investigate onsite waste treatment to *reduce* volumes
- Continued focus on 2020 Corporate Hazardous Waste Environmental Goal – *Zero Hazardous Chemical Waste to Landfill*
- *Stretch goals – 2025 Corporate Goals*
Wet Clean Supplier Call to Action

Current Wet Clean Rinse Profile

Proposed Wet Clean Rinse Profile
Thank you
Questions?
Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation
Risk Factors

Statements in this presentation that refer to forecasts, future plans or expectations are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "goals," "plans," "believes," "seeks," "estimates," "continues," "may," "will," "would," "should," "could," and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Such statements are based on management's current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important factors that could cause actual results to differ materially from the company's expectations are set forth in Intel's earnings release dated January 24, 2019, which is included as an exhibit to Intel's Form 8-K furnished to the SEC on such date. Additional information regarding these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Forms 10-K and 10-Q. Copies of Intel's Form 10-K, 10-Q and 8-K reports may be obtained by visiting our Investor Relations.